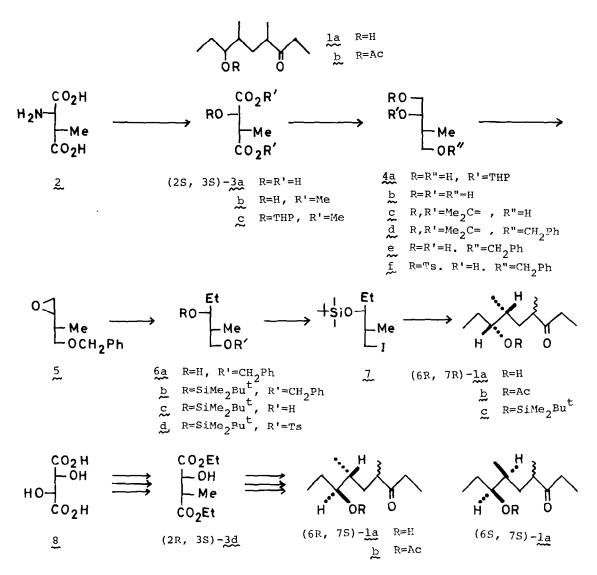
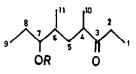
DETERMINATION OF THE ABSOLUTE CONFIGURATION AT C-6 AND C-7 OF SERRICORNIN (4,6-DIMETHYL-7-HYDROXY-3-NONANONE), THE SEX PHEROMONE OF THE CIGARETTE BEETLE

Kenji Mori\* and Hiroko Nomi (née Iwasawa) Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan


Tatsuji Chuman, Masahiro Kohno, Kunio Kato and Masao Noguchi Central Research Institute, The Japan Tobacco Public Corporation, Umegaoka 6-2, Midori-ku, Yokohama 227, Japan

<u>Summary</u>: The absolute configuration at C-6 and C-7 of serricornin was established as (6<u>S</u>, 7<u>S</u>) by synthesizing its (6<u>R</u>, 7<u>S</u>)-<u>erythro</u> and (6<u>R</u>, 7<u>R</u>)threo isomers.


The sex pheromone produced by the female cigarette beetle, Lasioderma serricorne, was recently isolated and named as serricornin.<sup>1,2</sup> The proposed structure, 4,6-dimethyl-7-hydroxy-3-nonanone <u>la</u>, was proved by its synthesis as a diastereomeric mixture.<sup>2,3</sup> The absolute stereochemistry at three chiral centers in <u>la</u>, however, remained unknown. We have now synthesized (<u>4RS</u>, <u>6R</u>, <u>7R</u>)-<u>la</u> and (<u>4RS</u>, <u>6R</u>, <u>7S</u>)-<u>la</u> and established the (<u>6S</u>, <u>6S</u>)-stereochemistry of the natural product.

As the chiral starting material we employed  $(2\underline{S}, 3\underline{S}) - \underline{threo} - \beta - \underline{methylmalic}$ acid  $(2\underline{S}, 3\underline{S}) - \underline{3a}^4$  and diethyl  $(2\underline{R}, 3\underline{S}) - \underline{erythro} - \beta - \underline{methylmalate}$   $(2\underline{R}, 3\underline{S}) - \underline{3d}$ .<sup>5</sup> Our synthetic route from  $(2\underline{S}, 3\underline{S}) - \underline{3a}$  is detailed in the Scheme.  $(2\underline{S}, 3\underline{S}) - (+) - \beta$ -Methylaspartic acid 2,  $[\alpha]_D^{2\underline{I}} + 13.0^\circ$  (5N-HCl), was prepared by resolving the racemate<sup>6</sup> with  $(\underline{S}) - (-) - \alpha$ -phenethylamine.<sup>7</sup> The amino acid 2 was deaminated  $(\underline{HNO}_2)$  to give  $(2\underline{S}, 3\underline{S}) - \underline{3a}, [\alpha]_D^{2\underline{4}} + 5.3^\circ$   $(\underline{H}_2 0)$  (lit.<sup>4</sup> + 5.2°). This was converted  $(\underline{CH}_2 N_2)$ to the corresponding ester 3b, bp 117~119°/12mm,  $[\alpha]_D^{2\underline{3}} + 0.24^\circ$  ( $\underline{Et}_2 0$ ). The OH group in 3b was protected (dihydropyran-TsOH-ether) to give a THP ether 3c. Reduction (LAH) of 3c followed by hydrolysis (TsOH-MeOH) gave a triol 4b via 4a. A soln of 4b (+ trace TsOH) in acetone yielded 4c, bp 71~73°/3mm,  $[\alpha]_D^{2\underline{4}} - 7.3^\circ$ (PhH), after work-up. This was converted (PhCH\_2Cl-NaH-DMSO) to a benzyl ether

1127



4d. The acetonide protecting group was removed (dil HCl-MeOH) and the resulting 4e, bp  $140 - 142^{\circ}/0.3$ mm,  $\left[\alpha\right]_{D}^{24} - 4.04^{\circ}$  (PhH), was tosylated (TsCl-C<sub>5</sub>H<sub>5</sub>N) to give 4f. This was converted (KOH-MeOH) to an epoxide 5, bp  $92 - 94^{\circ}/0.3$  mm,  $\left[\alpha\right]_{D}^{24} - 8.28^{\circ}$  (PhH). Treatment of 5 with Me<sub>2</sub>CuLi (ether, -55 - -20° after 4 hr) gave 6a (87% yield), bp  $125 - 126^{\circ}/0.5$  mm,  $\left[\alpha\right]_{D}^{24} - 2.30^{\circ}$  (PhH). The OH group in 6a was protected as a silyl ether (t-BuMe<sub>2</sub>SiCl-imidazole-DMF) to give 6b. Hydrogenolysis of 6b on Pd-C removed the benzyl protecting group to afford 6c, whose tosylation (TsCl-C<sub>5</sub>H<sub>5</sub>N) yielded 6d. This was converted to 7 by the Finkelstein reaction (NaI-Acetone). Alkylation of diethyl ketone with 7 (LDA-



| Carbon No. | Natural lb* | Natural lb after racemization at C-4 | (6 <u>R</u> ,7 <u>S</u> )- <u>lb</u> α | (6 <u>R</u> ,7 <u>S</u> )- <u>1</u> bβ | (6 <u>R</u> ,7 <u>R</u> )- <u>1b</u>                     |
|------------|-------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|
| 1          | 7.84        | 7.84                                 | 7.78                                   | 7.84                                   | 7.84                                                     |
| 2          | 34.22       | 34.28                                | 34.11                                  | 34.34                                  | 34.28                                                    |
| 3          | 214,88      | 214.88                               | 214.88                                 | 214.94                                 | 215.00                                                   |
| 4          | 43.53       | <b>43.</b> 53<br><b>43.</b> 35       | 43.88                                  | 43.58                                  | { 43.53<br>{ 43.35                                       |
| 5          | 24.22       | 24.22                                | 23.34                                  | 23.28                                  | 24.22                                                    |
| 6          | 33.70       | 33.70                                | 34.11                                  | 33.81                                  | 33.70                                                    |
| 7          | 78.04       | <b>78.04</b><br>77.75                | 78.92                                  | 79.09                                  | { 78.10<br>77.80                                         |
| 8          | 35.98       | {35.98<br>[36.39                     | 35.51                                  | 35.01                                  | $   \begin{cases}     35.92 \\     36.39   \end{cases} $ |
| 9          | 10.18       | 10.18                                | 10.00                                  | 10.06                                  | 10.18                                                    |
| 10         | 16.67       | {16.67<br>17.32                      | 18.08                                  | 16.21                                  | ${16.61 \\ 17.32}$                                       |
| 11         | 14.45       | ${14.45 \\ 14.63}$                   | 15.85                                  | 15.33                                  | ${14.45 \\ 14.63}$                                       |

For the assignments of the signals see ref. 1. (Measured as CDCl<sub>3</sub> solns.)

THF-HMPA) gave  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -1c. Deprotection of the silvl ether in 1c (10% aq. HF-MeCN, room temp)<sup>8</sup> yielded  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -serricornin 1a,  $^{\nu}$ max 3400 (m), 1710 (m) cm<sup>-1</sup>. For the purpose of chromatographic and spectral comparisons with the natural product,  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -1a was acetylated  $(Ac_2O-C_5H_5N)$  to give the corresponding acetate  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -1b (2.4mg after purification by prep GLC),  $[\alpha]_D^{23}$  + 16.6° (MeOH),  $^{\nu}$ max 1735 (s), 1710 (s), 1240 (s) cm<sup>-1</sup>, MS : m/z 168 (M<sup>+</sup>-AcOH).

In the same manner, diethyl  $(2\underline{R}, 3\underline{S}) - \beta$ -methylmalate 3d (prepared from L-(+)-tartaric acid  $\underline{8}^5$ ) was converted to  $(4\underline{RS}, 6\underline{R}, 7\underline{S})$ -1b. In this case the mixture was separable into two pure diastereomers,  $(6\underline{R}, 7\underline{S})$ -1ba (12.4 mg).  $[\alpha]_D^{23}$ -13.2°  $(n-C_6\underline{H}_{14})$ , MS : m/z 168, GLC (OV-101 column, 30m x 0.25 mm at 60~200° (+2°/min); He, 1 m1/min) : Rt 46.8 min, and  $(6\underline{R}, 7\underline{S})$ -1b $\beta$  (5.8 mg),  $[\alpha]_D^{23}$ -18.8°  $(n-C_6\underline{H}_{14})$ , MS : m/z 168, GLC (same condition as for the  $\alpha$ -isomer) : R<sub>t</sub> 47.5 min. The stereochemistry at C-4 of these diastereomers could not be clarified. Neither of them were identical with the acetate derived from natural serricornin on the basis of GLC and NMR comparisons.

Synthetic  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -<u>lb</u> was therefore carefully compared with the acetate lb derived from natural serricornin. Upon GLC analysis (4RS, 6R, 7R)-lb showed two peaks, one at  $R_{+}$  33.5 min and the other at  $R_{+}$  33.8 min (OV-101 column, 30m x 0.25mm at 70~200° (+2°/min); He, 1 ml/min), the former of which coincided with that of the acetate 1b derived from natural pheromone. Since the separation of the synthetic diastereomeric mixture  $(4\underline{RS}, 6\underline{R}, 7\underline{R})$ -lb was unsuccessful in preparative scale, the naturally derived acetate 1b was racemized at C-4 by having been left to stand its CDCl3 soln for 4 days at ca.20° Subsequent comparison (GLC and  $13_{C-NMR}$ ) of the synthetic acetate (4RS, 6R, 7R)-1b with the racemized acetate 1b proved their identity. The <sup>13</sup>C-NMR data of the natural and synthetic acetoxy ketones lb are listed in the Table. The identity of with the natural lb after racemization at C-4 can clear-(4RS, 6R, 7R)-lb ly be seen from the Table. However, they were different in their chiroptical properties : the synthetic (4RS, 6R, 7R)-lb was dextrorotatory,  $[\alpha]_{p}^{23}$  + 16.6° (c=0.12, MeOH), while the equilibrated acetoxy ketone 1b derived from the natural pheromone was levoratatory,  $\left[\alpha\right]_{D}^{23}$  -13.8° (c=0.08, MeOH). The absolute stereochemistry at C-6 and C-7 in serricornin la was therefore assigned to be 6S, 75. The elucidation of the stereochemistry at C-4 is now in progress.

<u>Acknowledgement</u>. - This work was partially supported by a Grant-in-Aid for Special Project Research (511608) from the Japanese Ministry of Education, Science and Culture.

## RERERENCES AND FOOTNOTES

- 1. T. Chuman, M. Kohno, K. Kato and M. Noguchi, <u>Tetrahedron Lett</u>., 2361 (1979).
- 2. T. Chuman, K. Kato and M. Noguchi, Agric. Biol. Chem., 43, 2005 (1979).
- 3. M. Ono, I. Onishi, T. Chuman, M. Kohno and K. Kato, ibid., 44, 2259 (1980).
- 4. S. Tatsumi, M. Imaida and Y. Izumi, <u>Bull. Chem. Soc. Japan</u>, <u>39</u>, 1818 (1966). These authors prepared this diacid by resolving the racemate prepared in three steps from ethyl propionate and diethyl oxalate.
- 5. K. Mori and H. Iwasawa, Tetrahedron, 36, 87 (1980).
- 6. H.D. Dakin, J. Biol. Chem., 141, 945 (1941).
- Enzymatic resolution of the racemic N-acetate with <u>Aspergillus</u> aminoacylase was less successful, although the resolution with hog kidney acylase II had been reported to be satisfactory : cf. L. Benoiton, S.M. Birnbaum, M. Winitz, J.P. Greenstein, Arch. Biochem. Biophys. <u>81</u>, 434 (1959).
- R.F. Newton, D.P. Reynolds, M.A.W. Finch, D.R.Kelly and S.M. Roberts, <u>Tetra-hedron Lett.</u>, 3981 (1979).

(Received in Japan 15 December 1980)